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The influence of buoyancy on the pressurestrain term is calculated approximately 
by an analytical theory. It is shown that the buoyancy contribution to (#tj+q5jt)l, 
the fluctuation part of the pressure-strain term, is approximately equal to the 
buoyancy contribution which comes from the mean-field part of the pressure-strain 
term, provided'that the mean buoyancy does not vary rapidly in space or time. The 
latter, but not the former, buoyancy contribution was previously obtained by 
Launder (1975) and by Zeman & Lumley (1976). Both contributions are shown to 
be accounted for by use of a single numerical coefficient C,*. The value of C,* predicted 
from purely theoretical considerations is 0.7, and a value determined from an 
experiment is 0.9. The theoretical method has some generality and can be applied 
to higher than second-order correlations of velocity and temperature fluctuations. 

1. Introduction 
In previous papers, the fluctuation field part of the pressurestrain rate was 

theoretically calculated for unstratified fluids (Weinstock 1981 a, 1982 ; hereinafter 
referred to as I and 11). The theory was tested by comparison with nearly 
homogeneous shear flows for both weak and strong shear strength (Weinstock & Burk 
1985). The purpose of our present article is to extend that theory to stratified fluids. 
The extended theory will then be compared with models of the pressure-strain rate 
as suggested by Launder (1975), Zeman & Lumley (1976), and Lumley, Zeman & Seiss 
(1978). 

Our method of calculation is based on the cumulant discard used in I for the 
unstratified case (Weinstock 1981 b). The discarded cumulant is a two-time correlation, 
and as such, constitutes a much milder approximation than the discard of single-time 
correlations in quasi-normal theory (e.g. Proudman & Reid, 1954). The goal is to 
calculate the pressur-train term in terms of energy spectra, not to calculate the 
spectra themselves - a much less ambitious goal than that of other statistical 
turbulence theories (e.g. the direct interaction approximation, Kraichman 1959). 
This limited goal allows our calculation to be much simpler than such theories, and 
is entirely analytic. Furthermore, previous knowledge or experience with contem- 
porary methods of statistical turbulence theory is neither required nor expected. Our 
plan is to repeat briefly the derivation in I in such a way as to include stratification 
in a straightforward manner. This derivation determines the contribution of strati- 
fication of both parts of the pressurestrain correlation - the nonlinear-fluctuation 
part (the slow term) and the mean-field part. To our knowledge, the contribution of 
stratification to the nonlinear-fluctuation part has not been considered previously. 
A related calculation was recently reported by Dakos & Gibson (1985) for a 
pressurescalar correlation ; the pressurestrain term was not under considera- 
tion. 
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For further simplification, to help clarify the theory and its underlying approxima- 
tions we assume V U ,  the mean shear, and all mean values (including correlation 
functions) vary but little in a space and time on scales Lo and T~ respectively, where 
Lo is the characteristic lengthscale of the scalar energy spectrum and rL  is the 
Lagrangian timescale. 

2. Pressure-strain rate 

(the Reynolds stress equation) is 
The pressure-strain rate correlation that appears in the stress transport equation 

+++T = po'(p[Vu+(VIoT1), ( 1 )  

where u = u(x ,  t )  is the fluctuation part of the fluid velocity at  spatial position x at 
time t, p= p(x, t) is the pressure fluctuation, po is the mean particle density assumed 
constant, the angle brackets denote the ensemble average (mean value), and the 
superscript T denotes the transpose of a dyadic; e.g. the i ,  j components of Vu and 
( V U ) ~  are au,/ax, and aui/ax, respectively, where i and j denote Cartesian coordinates 
1, 2 or 3 (i.e. i = 1 ,  2 or 3). The fluctuation velocity includes all random fluctuations, 
random-phased gravity-wave fluctuations as well as turbulence. 

To calculate (pVu>, or (~(VU)~), we need expressions for p and u, and both 
quantities can be obtained from the Navier-Stokes equation. The fluctuation part 
of that equation is given by 

au VP go -+(u+ u).vu = (u~vu)---u~vu--+vv2u, 
at Po 0 0  

where 8, is the mean (potential) temperature, B is the fluctuation potential 
temperature, g is the acceleration due to gravity [g = (0, -g,O)], and v is the 
molecular viscosity. 

A formal expression for p is obtained by taking the divergence of (2) and using 
incompressibility V-u = 0. 

vzp = -v~(u~vu)'-2vu:vu-g~v - , 
Po (3 (3) 

were we have defined (u*Vu)' = (u*Vu)-(u*Vu). Equation (3) can be solved for p 
by using Fourier transforms. The Fourier transforms of p and u are defined by 

p(k) = dxp exp ( - ik-x), u(k) = dxu exp ( - ik-x). (4) s 
We then obtain p(k )  E p(k, t )  from the Fourier transform of (3) : 

k ig*kB(k) '0 = N(k)+2iu(k)-VU.-+--. 
Po k2 k2 Bo (5 )  

Here, k2N(k) denotes the Fourier transform of the nonlinear fluctuation term 
V (u Vu)' given by 

B(k) is the Fourier transform of 8, we have used our simplifying assumption that 
Vu and 8, vary slower in space than do Vu and B respectively, and periodic boundary 
conditions are assumed in order to avoid the affects of boundaries. 
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Next we substitute ( 5 )  into the Fourier expansion of the pressure-strain correla- 
tion + = p;'(pVu) E - ( Z X ) - ~  V-'Sdkik(u(k)*p(k)) and obtain three parts as 
follows : 

(pVu) - 5 J dkk -- - 
Po v (21q3 

x {(u(k)*N(k))+2i(~(k)*u(k))*VU*~+- k ig-k (u(k)*O(k))},  (7) 

where Vis the volume of the system, the superscript * denotes the complex-conjugate, 
and our assumption of slow spatial variations of correlations (quasi-homogeneity ) 
has been used to approximate (u(k)*p(k')) = (2x)a V-lS(k-k')(u(k)*p(k)) in +. 
If (7) appears different from the +-expressions of Zeman & Lumley (1976), it is only 
because, here, we use Fourier transforms and quasi-homogeneity. The +, part is due 
to nonlinear fluctuations (the part associated with tendency-towards-isotropy and 
referred to as the slow term), the +, part (referred to as the fast term) is due to mean 
shear, and the 9, part is due to mean stratification (buoyancy). 

The explicit buoyancy term +, was calculated by Launder (1975) and Zeman & 
Lumley (1976). However, to our knowledge, the implicit buoyancy correction to +, , 
has not been considered. Our goal is to calculate the buoyancy correction to +, ,, 
compare it with +, 3 ,  and then combine them so as to obtain a more complete theory 
for the influence of buoyancy on the pressurestrein term. A buoyancy correction to 
+, need not be considered since it is given directly in terms of velocity spectra (e.g. 
Launder, Reece & Rodi 1975; Lumley 1978; Reynolds 1976). 

9 . 3  
k 8 0  +. 1 +, 2 

3. Calculation of 9, , 
To calculate +, , presents the familiar closure problem of calculating third-order 

velocity correlations (u(k)* N(k)) in terms of velocity covariances (stresses). A 
relatively simple, and fairly accurate, approximation for this closure was given for 
the case of neutral stratification. Here, we need only extend that calculation to 
include stratification. This approximation is obtained by expressing u in terms of a 
second-order velocity correlation so that (u(k)* N(k)) can be expressed as a two-time, 
fourth-order velocity correlation. A ' mild ' kind of closure approximation can be 
applied directly to that fourth-order correlation. 

To begin this closure, the desired expression for u is obtained by a formal 
integration of (2 ) ,  the Naviedtokes equation: 

VP 
u(t) = u(O)-J t dt, [(u-Vu)'+-+u*VU+ 

0 Po 

where it is understood that I(, p,  8 and Uin the integrand are at time t, [e.g. I( = u(tJ 
in the integrand], and the molecular viscosity term vV2u has been neglected. This 
neglect can be justified at high Reynolds number since, then, the scales influenced 
by the viscous terms are too small to contribute significantly to the pressurestrain 
term. The Fourier transform of (8) is taken, and, in addition, (5 )  is substituted for 
p(k). The result is 

gok2 8 
( k2 )eo 1' u(k,t) = u(k,O)- (u*Vu),+ikN(k)+ g-- -+/I (9) 
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where (u*Vu), denotes the Fourier transform of (u'VU)' 

(u-Vu), = dx(u*Vu)' exp (-ik*x), 

and h denotes all the terms containing 27. We do not trouble to evaluate h here 
because we estimate its contribution to +, is quite small in a uniformly moving 
frame of reference (cf. Weinstock 1981 a) and will be neglected in the next paragraph. 
The term (g*kz/k2) 8/8, comes from the ig*k8/8, term of p(k) given in (5 ) .  

A simplified expression for +, can now be derived by substitution of (9) into the 
(u*N)  term on the right-hand side of (7) : 

s 

where h, the term containing V, has been neglected as small, ZI, is the r.m.8. 
turbulence velocity and, in addition, the initial-value term (u(k,  0)* N(k,  t ) )  has been 
neglected since when divided by (u(k, t )*  N(k,  t ) )  it  decays towards zero as t increases 
beyond the Eulerian decay time (kv,)-l, (Weinstock 1981~) .  

The first average quantity in the integral on the right-hand side of (lob) is a 
fourth-order correlation, and, when substituted in (lOa), yields the 'tendency- 
towards-isotropy ' term, the term sometimes approximated by the model suggested 
by Rotta (1951). The second average quantity in ( l o b )  is a correction which arises 
from buoyancy. This buoyancy term is new. It is the term we wish to calculate. The 
first term (the 'return-towards-isotropy' term) is not new. In the absence of 
buoyancy, this term was calculated in much detail (Weinstock 1981a, 1982; 
Weinstock & Burk 1985), and its matrix components ij were found to be given 
approximately by 

where e, is the kinetic energy density of random fluctuations (e, = $:), E is the rate 
of dissipation of kinetic energy by molecular viscosity, and b, = (ut u,) -@, 8, is the 
stress anisotropy. [This expression is discussed in the cited references, and we shall 
not discuss it here except to point out that it differs from the Rotta model in that 
the numerical coefficients Cij) are not the same for all i a n d j  (i.e. Cii) =l= 6'1;) + Ci;)), 
and, in addition, vary with (uz u,) in a manner determined by the theory.] We obtain 
the same expression for the unstratified case under the assumption that the shape 
of the scalar velocity spectrum is not affected by buoyancy when the Reynolds 
number is very large. In  both cases (stratified and unstratified) we assume an inertial 
subrange with a k3 power law and, at larger scales, a km(m > - 1) power law. What 
is allowed to vary with buoyancy is the anisotropy of kinetic energy density. 
Substitution of ( 1 1 )  into the ij-component of (lOa), we have &* 1, the ij component 

where Bg, is used for convenience of notation. 
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There now remains to calculate the 'fluctuation field' buoyancy term on the 
right-hand side of (12). This is done by use of the thermodynamic equation (the 
potential temperature equation) to express ( 0 . N )  as a fourth-order cumulant of 
the form g-(B*u*uu).k*, followed by use of our (mild) cumulant discard approxi- 
mation. This calculation of the ( e * N )  term in (12) is very similar to that previously 
given for the case of no-buoyancy (Weinstock 1981a), with an additional approxi- 
mation for the influence of buoyancy on Eulerian timescales. For the interested reader, 
the derivation is given in Appendix A to show how buoyancy enters in detail. We 
emphasize, as strongly pointed out by a referee, that the derivation is limited to slowly 
varying mean fields. The derived result is 

where Pf, is the buoyancy production (or loss) of energy, oB G (-8,'g*VO,)i is the 
Brunt-Vliisiilii frequency, F is a dimensionless buoyancy parameter referred to as the 
Froude number, C,, is the theoretical coefficient calculated in an approximate way 
from first principles, with the value 0.4 for very large Reynolds number, g is assumed 
to be directed along the x,-coordinate, and H = H(wB),  the Heaviside step function, 
occurs because the +F-l correction vanishes when the stratification is unstable 
(wg < 0). Equation (13) gives (q5zj+$,i)l, the fluctuation part of the pressure-strain 
term, in the presence of buoyancy. It is seen that this part of the pressure-strain term 
tends to isotropize the buoyancy production Pf,, similarly to the mean field part 
(Launder 1975; Zeman & Lumley 1976) shown in the next section. The quantity q, 
is a dimensionless parameter whose magnitude can be shown to be less than C,, (about 
one third C,,) for a nearly uniform mean shear flow (Webster 1964; Tavoularis & 
Corrsin 1981). One may ignore qo for practical purposes. 

A limitation of (13) pointed out by a referee is its implication that a sudden change 
in the near-field quantity 8, is reflected immediately in the fluctuation field, whereas, 
in reality, it takes a little time for the fluctuation field to equilibrate with the mean 
field. This defect in (13) is a consequence of our basic restriction to mean fields that 
vary slowly in time compared to the Lagrangian timescale i.e. (13) applies only when 
the mean fields are slowly varying. This restriction is imposed in going from (12) to 
(13). The integral in (12) contains the time history (memory) of the mean field and 
fluctuations, and this time history is ignored in the derivation of (13). Further 
discussion of this point is given in $6. 
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4. + and completion of the pressure-strain term 

The mean-field buoyancy term 4, was previously calculated by Launder (1975) and 
Zeman & Lumley (1976). Both found 

4.1. The mean-field buoyancy term 

($t j  + $ j J s  = -C3e(P!j-ipe d i j ) ,  (14) 

where C3e is a numerical constant. Zeman & Lumley obtained C3, = &, (hereinafter 
referred to as the theoretical value of (730) by an approximate solution of the integral 
for +, in (7),  and Launder (1975) obtained C3e E 0.6 from an empirical consideration 
(these two values are reconciled in $4.3). Upon comparison, i t  is seen that (14) is the 
same form as the buoyancy correction to ($l,+$,i)l given by (13), and, further, the 
magnitudes are nearly the same. Since the two buoyancy corrections have nearly the 
same magnitude both must be included, and, since they have the same form, only 
one numerical coefficient is needed. This is discussed next for the total pressure-strain 
term. An applicability difference between the two buoyancy corrections is that (14) 
is valid for rapidly as well as slowly varying mean fields whereas (1 3) is a priori limited 
to slowly varying fields since a ‘memory’ term was neglected in its derivation. 

4.2. Completion of the pressure-strain term 
The total pressure-strain term is given by substitution of (13) and (14) in (7) : 

This equation is our principal substantive result. The principal influence of buoyancy 
is given by the third term on the right-hand side of (15). In addition, there is also a 
minor buoyancy correction to the ‘ resistance-to-large anisotropy ’ term, the first 
term on the right-hand side, which is significant when F x 1. Roughly speaking, F 
is proportional to the ratio of turbulence kinetic energy to the kinetic energy of 
gravity wave fluctuations. Consequently, F is significant in (15), when the energy in 
waves is comparable to the energy in turbulence. The kinetic energy e,  = t (u’*u’ )  
includes gravity waves aa well as random turbulence since u’ is the total velocity of 
random fluctuations. 

With regard to the mean shear term ($i,+$,jis)2 in (15), an approproximate 
expression was derived by Launder et al. (1975) and Naot, Shavit & Wolfshstein 
(1973) as 

($1,+$,t)2 = - (c2+8)  {pt,-p~i,>/ll - (30C2-2) e,{aUi/ax,+auU,l/a~,}/55 

- (8c2 - 2) {Dt, - ipS,>/ 1 1, 

where p t j =  - {(ui uk) aU,/axk + (u, uk) aU,/axk} is the mechanical production term 
which occurs in the Reynolds stress equation, P = ?jet, and D, = - {(u, U k )  aUk/ax{ + 
<ut Uk) a u k / a x , } .  We have found this expression satisfactory for both strongly and 
weakly sheared nearly homogeneous unstratified flows when c2 is selected to be 0.42 
(see Weinstock & Burk 1985). 

4.3. Reconciliation of two previous theories of 4, 
The buoyancy term, the third term on the right-hand side of (15), is seen to be fairly 
simple, an isotropizing buoyancy production term multiplied by a single numerical 
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coefficient C,*. As we previously showed, only this coefficient was needed since the 
buoyancy contribution to +, , has the same form as +, 3, provided that the mean field 
does not vary too rapidly, and, therefore, the sum of +, and +, could be expressed 
in terms of one coefficient. Hence, there is no error of practical consequence when 
+, is retained while the buoyancy correction to +, , is neglected, provided that the 
numerical coefficient C ,  is chosen to be sufficiently large to compensate for the 
neglect of Cle. This procedure can be ascribed to Launder (1975), who, in effect, chose 
C,, = 0 and C3, = 0.6, with the resultant C,* equal to 0.6, a choice fortuitously quite 
close to the theoretical value of C1, + C3,. We thus find a reconciliation between the 
numerical coefficient of Zeman & Lumley (1976) and that of Launder (1975), i.e. the 
theoretical coefficient C ,  is approximately as calculated by Zeman & Lumley, and, 
at the same time, the larger coefficient suggested by Launder should be used for 
turbulence modelling since C1, occurs in addition to C3,. 

5. Experimental evaluation of C,* 
A remaining consideration is to determine if the theoretical value C,* x 0.7 is 

accurate at large F, And, if not, to obtain a more accurate value of C,*. This must 
be done by comparison with experiment. The experiment of Webster (1964) appears 
most suitable to determine C,*, although there is doubt (by Webster, himself) that 
his data attained equilibrium. 

Since experiments observe the relative stress anisotropy mt,, we must, in order to 
compare theory with experiment, determine how the theoretical Cg influences me,. 
An approximate theoretical expression for mi, is readily obtained from the Reynolds 
stress equation (Rodi 1976 - algebraic modelling). That equation is given, for a steady 
state, by 

The pressurntrain term is given by (15). For a quasi-uniform shear flow with U 
along the 2,-direction and the gradient along x 2 ,  the Launder et al. (1975) model can 
be expressed as 

where Ci;) = 0.73, C$i) = 0.53, C$i) = 0.92, Cli) = 0.6 for the choice c2 = 0.42 (this 
value of c2 is suggested by Weinstock & Burk 1985). Substitution of (15) and (17) 
into (16), and setting D(ue u,)/Dt equal to zero for the Webster experiment, we solve 
for the relative anisotropy mi, = e;l( (uc u,) - $eo St,) to obtain 

(A,+$,e)z = -Cp(+$P4,)9 (17) 

where the term $H/F is ignored for Websters' experiment since, there, F % 1. By use 
of P,, = 2P and P = e - P@, the diagonal components of me, can be written as follows : 
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It is seen that the theoretical m33 varies with Pel ,  as (C!&)-'$(C,*-Cg)) Pels. This 
quantity must be very close to zero in order to agree with the experimental data 
which show that m33 varies very little with Pel€ = R, (Webster 1964; see figure 1 of 
Launder 1975). Hence, 

c,* x cg. (20) 

This equation yields C,* x Cg) x 0.9 when c2 is chosen to be 0.42 in the Launder 
et al. (1975) model of Ci;). The reason why Launder (1975) obtained the coefficient 
0.6 from the same data is that he employed the abridged model of (& + &),, and 
that model has the coefficients Ci;) = c2 = 0.6 (all i and j). Consequently, when 
substituted in (20) the abridged model yields C,* = 0.6. 

The experimental value C,* x 0.9 is not conclusive because the observed stresses 
did not reach equilibrium. It does differ from the theoretical value of about 0.6 to 
0.7, but the difference is within approximation errors of the theory. 

6. Summary and discussion 
the 

slow-term part of the pressure-strain term. This contribution was found to have the 
same form as the mean-field buoyancy term (& + $j,,)3 previously calculated by 
Launder (1975) and Zeman & Lumley (1976), provided that the mean buoyancy field 
varies slowly in time and space. Because of their similarity, both buoyancy 
contributions are accounted for by use of a single numerical coefficient C,*, the sum 
of the coefficients of the two terms. The combined buoyancy contribution to the 
pressure-strain term is C$(P$-~,P6ir). The theoretical value of C,* is about 0.7, and 
the value estimated from the experiment of Webster (1964) is 0.9. The experimental 
value is a little uncertain since the measured stresses may not have reached 
equilibrium. Such uncertainty notwithstanding, the 25 % difference between experi- 
mental and theoretical C,* lends support to the theoretical approximations made in 
our Appendix. The value C,* = 0.9 obtained from Webster (1964) could be verified 
by further experiment in nearly homogeneous turbulent shear flow operated at 
values of R, in excess of about 0.2. 

For R, > 0, the present theory implicitly includes fluctuations of gravity waves 
in addition to turbulence, i.e. e, is the total energy in fluctuations, turbulence plus 
waves. Roughly speaking, energy scales smaller than the buoyancy length 
L, = 2nd N-i are viewed as turbulence whereas energy scales exceeding L, are 
viewed as gravity waves. Not specified or discussed is the distinction between random 
and coherent gravity waves. One suspects that random waves will influence the 
pressure-strain term differently from coherent waves, but a theory to account for this 
difference has not been worked out. 

A question touching on the broader aspects of turbulence modelling is implied by 
the memory term in the integrand of (12). This term implies that the structure of 
turbulence depends on the auto-correlation time, the Eulerian timescale, of the 
fluctuation field. This memory is not usually included in turbulence models. Hence, 
one may wonder if such turbulence models, based on slow variations and weak 
inhomogeneities, are meaningful when the variations are rapid. Lumley (1978) has 
discussed this question in a general way. The reader is referred to that discussion. 
All we have to add is that the influence of the memory term may be significantly 
weakened when the turbulence equations are integrated forward in time, since, then, 
the auto-correlation and mean field in (12) occur in the integrand of a double time 

A theoretical calculation was made of the buoyancy contribution to ($i j  + 
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integral. This double integral tends to ‘smooth out’ rapid changes. The extent of 
smoothing can be estimated by utilizing (12), instead of (13), in test turbulence 
modelling computations, with substitution of various possible timescale variations 
for @,(t,) and ( 8 ( k ,  t,)* N(k, t ) ) .  

Appendix A 

equation 
To derive (13) from (12), the calculation of (O*N), we begin with the thermodynamic 

(A 1)  
ae 
-+(u+ u)-ve- (U.ve)+u-v~,  = 0, 
at 

where molecular conductivity has been neglected for the scales to be considered. 
Straight-forward integration yields 

where (U’Ve)’ = (u*Ve)-<u*Ve), and it is understood that u = u(t2), 0 = e(t2), etc. 
in the integrand. Substituting the Fourier transform of ( A 2 )  into (O*N), and 
neglecting UVO, gives us 

(B(k, tl)* N(k, t ) )  (8(k,  0)* N(k, t ) )  - - dt2[((U*Vt9),* N(k, t ) )  

+ ( ( W ,  t ) *  W k ,  t))’V@,I, (A 3) 

s:’ 
and (u*VB)k denotes the Fourier transform of (u-ve)’; it is explicitly given by (A 6). 
The neglected U V 8  term in (A 3) is estimated to be small, similarly to the neglect 
of the U terms in ( lob) .  Also similar to  ( l o b ) ,  the initial-value term in (A 3) decays 
towards zero when t exceeds ( k ~ ~ ) - ~ ,  and be neglected for large enough t .  Substitution 
of (A 3) in (12) gives 

This equation shows two buoyancy corrections to &, ,, a fourth-order correlation pij 
and a third-order correlation fl,. However, we find that the fourth-order correlation 
is the larger of the two for the experimental conditions of Webster (1964), by a factor 
of about three. We calculate & fist. We simplify the notation by letting Fo denote 
the fourth-order correlation in the integrand of pa, : 

F~ = <(u*ve),* ~ ( t ) ) ,  (A 5 )  

and then substitute (6) for N(k, t ) ,  and, also substitute 

(u‘ve),*= (2n)-31 dk b U ( k b,  t 2 )**( - i ) (k-kb)8(k-k , , t2 )* ,  (A 6) 

it being understood that (u-ve) in (A 4) is a function oft,. We thus have Fe expressed 
as 
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where we have used incompressibility 

kb*u(kb, t z )  = O ,  (A 9) 
and the definition [uu]’ = UU-(uu).  To close the fourth-order correlation in (A 7) 
we expand it in cumulants as 

(U(kb, t z ) *  o(k”, t z ) *  [u(ka, t)u(k’, t)I’) = (U(kb, t z ) *  U(ka, t ) )  (o(k”, t z ) *  u(k’, t ) )  

4- (U(kb, t z ) *  U(k’, t ) )  (o(k”, &)* U(ka, t ) )  +&p’(t; t z ) ,  (A 10) 

where &Q4)(t; t z )  is the fourth-order cumulant of the correlation on the left-hand side 
of (A 10). Of special importance here, we note that &p)( t ;  t z )  is a ‘two-time’ cumulant 
and is very small for large (t-tl) (i.e. for t - t ,  > (kw0)-l). Our basic approximation 
is to neglect &Q4). Neglect of this two-time correlation is not as serious as the neglect 
of ‘ single-time ’ fourth-order cumulants in quasi-normal theory (e.g. Proudman & 
Reid 1954). A similar neglect of two-time cumulants is basic to the direct interaction 
approximation (Kraichman 1959). 

We express the second-order correlations of (A 10) in terms of the velocity 
spectrum S defined by S ( k ;  t, t z )  = (u(k,  t,)* u(k, t ) )  V-l and the mixed spectrum 
(temperature flux) R ( k ;  t ,  t z )  = (8(k ,  t,)* u(k, t ) )  V-’ as follows, 

‘1 (A 11) 
(U(kbrt2)* u(ka, t ) )  = S(ka;  t ,  t z )  (2X)3S(kb-ka)  

(B(k”,t)*u(k’, t))  = R(k’; t , t , )  ( 2 ~ ) ~ S ( k ” - k ’ ) , J  

where S is the Dirac delta function, and S and R have been normalized with volume 
V so as to satisfy the normalization condition 

Equation (A 11) is valid for homogeneous turbulence, and approximately so for our 
quasi-homogeneous case of slow variations of average quantities on scales 
2nk-1 < Lo. Substituting (A 11) in (A 7), and using (A 8), we obtain 

(A 13) F,(k; t ,  t z )  = 2iV - k.R(k’;  t ,  t z )  S(ka;  t ,  t z )  : F ,  k2 s (E; 
which expresses Fo in terms of covariances. 

now given by substitution of (A 13) and (A 5) into & defined by (A 4) 
The desired buoyancy term Ptj, the principal contribution of buoyancy to qjgj, ,, is 

Next, we express the right-hand side in terms of single-point covariances (Reynolds 
stresses), and single-point temperature flux (O(r, t )  u(r, t ) ) .  This is readily accom- 
plished since there is sufficient knowledge available about the behaviour of 
S ( k ;  t ,  t z )  when t 9 t,, and a closely related calculation has already been made 
(Weinstock 1 9 8 1 ~ )  for the unstratified case. We need only account for the influence 
of buoyancy. To begin with we use 

r t  r t  
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where 7k is an Eulerian integral time, and was discussed by Lumley et al. (1978) and 
Weinstock (1978, 1981b). It is approximately given by 

7 k  = [k2t$ +*& H ( W B ) ] - ~ ,  (A 16) 
"2 = - 

B - (g/80)*v80, 

Here, wB is the Brunt-VBisZilZi frequency, H is the Heaviside step function (this 
function arises because unstable stratification does not influence the correlation 
decay time in a direct or obvious fashion), and W E  is the kinetic energj density 
residing in random fluctuations whose wavenumber is less thank; i.e. v i  = jk dk' E(k') 
where E'(k') is the scalar kinetic energy density of random fluctuations. Equation 
(A 16) is an assumed model to account for the damping of velocity fluctuations by 
stable stratification, the decrease of integral timescales with increase of oB. Its virtue 
is that it is approximately correct in the limits of large kvk/wB and small k v k / W B  (for 
positive wB) (see Weinstock 1981 b). 

Substituting (A 15) into (A 14) we have 

7: = [ (7k.)-1 + ( T ~ , ) - ' ] - ~ .  

The k and k, integrations can be performed by making fairly weak assumptions 
about the behaviour of R(k') and S(k,) (Weinstock 1981a). However, much 
simplification is achieved by approximating S with its isotropic part : 
S1(k,) = 27te(I-k:/k:) E(ka)/ki) where l i s  the identity matrix. Substituting SI into 
(A 17) and use of the definition k - R  = k*(u(k')*O(k')) V-l we have 

To simplify the integrations in (A 18), we specify g to be directed along the z,-axis. 
This introduces no loss of generality in (A 18), since the integrations are over all k 
and k, and we can choose the 2 direction arbitrarily. Further simplification is possible 
because (A 18) implies 

811 = 833 = - + 8 2 2 ,  

since Bii = -kz(k:/k2) gz/@o, B33 = -k2(ki/k2) gZ/@o, 

B,, = k2V- k:/k2) g,/@o = K2(K:/K2 + Ki/K2) SZ/@O,  

(A 19) 

and in the integration, k, can be approximately interchanged with k3. Hence, we need 
only calculate one diagonal element to obtain the others. We choose to calculate &. 
Anticipating the fact that in (A 18) the main contribution comes from the 
k,(u,(k')* 6(k')> component of k* (u(&')* O(k')>, the other two components having 
been found to be much smaller, we multiply numerator and denominator of (A 18) 
by 

2 FLM 172 
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and rewrite (A 18) for i = j = 2 as 
9 

8 2 2  = %C,e (u2 e>, 
8 0  

x[" 8, l* (2703 (u , (k)*O(k)) ] ' .  (A 21) 

Here, CIS can be seen to be a non-dimensional coefficient and, in face, is a weighted 
mean value averaged over the spectrum (u(k)*O(k)).  Because i t  is such an average, 
Cle is not particularly sensitive to the spectral shapes of (u,(k')* O(k')) and E(ka) ,  
and, consequently, approximate spectral shapes can be used in (A 21). A similar use 
of approximate spectra to calculate the pressure-strain coefficients C{i) were shown 
to be accurate to within 20 % (Weinstock 1981 a). The spectrum E ( k )  is approximated 
as done previously (Weinstock 1981a) by E ( k )  = o l e k t  for k, < k < k,, and 
Ejk)  = ad(k;"-i) km for k < k,, where k, is the viscous 'cut-off' wavenumber, 
m > - 1 is an adjustable parameter, and k, is the wavenumber where the spectrum 
is maximum. The approximation for (u,(k) O(k)) is to neglect its variations with the 
direction of k (its angular variations) and to represent its scalar variations by 
(uz(k)*O(k)) = ak-9 for k, < k < k,, and (u,(k)*O(k)) = a(k im- t )  km for k < k,, 
where a is constant coefficient which need not be specified. In actuality, experimental 
data of Kaimal et al. (1972) suggest that the spectrum (u,(k) O(k)) cc k-2 at very large 
k ,  but that there is an intermediate range where the spectrum is very broad and could 
be approximated by k-f. Of course, the data are not necessarily pertinent because 
they were for a surface layer where wall effects are important, whereas wall effects 
are ignored in our calculations. 

With this approximation for (u,(k)*O(k)), and use of our approximation that 
k.(u(k')* O(k')) E k,(u,(k')* O(k')) for the integration in (A 21), all the quantities 
in (A 21) are specified and the integration can be performed straightforwardly for 
various values of m, k,, and k,. It is then found that (A 21) is very insensitive to 
values of m, suggesting a 'universal' behaviour for Cle. The calculated value of C,, 
is 

where the 'Reynolds number' R, E v,/vk,  comes from the viscous 'cut-off' at 
wavenumber k,, and the (ki  vi)-l w& term comes from the buoyancy-dependent decay 
time rc defined in (A 17) and (A 16). 

The other diagonal elements p,, and p33 are determined by (A 19) and (A 20) to 
be -jCleg2(u2 8). Hence, the diagonal components of & can generally be expressed 
as 

Cl, + 0.4( 1 + +ki2  v;' W& H)-' ( 1 - EL'), (A 22) 

&+& = -C,e(Pf j -$Pe~t j )  (i =j) (A 23) 

pe, = - @o"gt<u, 6) +g&t 0 1 ,  
Pe = + Trace Pf, , 

where Pf, is the buoyancy production (or loss) term of the Reynolds stress equation. 
Although (A 23) was derived forg = - g2 f,, it  can be shown to be valid for an arbitrary 
direction of g. 

The off-diagonal element & +/3,{ is calculated from (A 18) by anticipating the fact 
that, for this element, the component k,<u,(k')* O(k')) is more important in (A 18) 
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than the other components of k*  (u(k’)* B(k’)). We then multiply the numerator and 
denominator of (A 18) by (gz/@,) (u, 0 )  = (2~)-~V-l jdk(u,(k)* B(k)) and rewrite 
the result as 

~ z + ~ z l =  c;e($) <ule> E - ~ e e z ,  (A 24) 

where C;, is a numerical constant. The integration of (A 25) for C;, is performed in 
much the same way as was done for (A 21), except that here, we use the experimental 
fact that (u,(k)*B(k)) varies as k-f, instead of k-4 at short scales, the inertial 
subrange scales (Kaimal et al. 1972). We thus obtain 

Ci0 x 0.6( 1 + ko2 vo2 0: H ) - l ( l -  @). (A 26) 

It is seen that C;, is as large as Cl,, the coefficient of the diagonal elements. If C1, 
and C;, were approximately equal, the combination of (A 23) and (A 24) would give 
us 

A,+& = -clB(P:,-P4,) (all i7.h (A 27) 

for all values of i and j. Approximation (A 27) is appropriate for us to make despite 
the difference in the values of Cl, and C;, because these values are only approximations 
to begin with. Equation (A27) gives us the fourth-order correlation term that 
appears in (A 4), that is, the symmetric part of that term. 

Next we briefly calculate /$,, the third-order correlation in (A 4). Our goal is to 
obtain an approximate expression for it in terms of q5t3, l .  We first use 

as was done similarly in (A 15),to write /$, in the approximate form 

(A 29) 
1 & = -+ J$$ Btj7$(u(k)* N(k))’V8~- 

Next, we substitute (lOa), the definition of &, 1, with Bt, = ktg,-kik,k*g/k2 in 
(A 29), and integrate to obtain the approximation 

R, x -7io[4,A,, 1 - % 4 d n T t ,  14,l (summed on n), (A 30) 

where we have used the following approximations: (a) the main contribution to 
(A 29) from the kd k, k-zg.k/B, part of 8, is for i = j and is approximately (f)g*k/B, 
in (A 29) ; and (b) the main contribution from gg V8, is for the gt component. 
Equation (A 30) gives the third-order correlation. 

This expression for /3$ can be readily related to & in (A 27) if we specify the 
2-2 
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direction of g. Thus, we take g to be directed along x2.  We then find that (the 
symmetric part of) (A 30) can be expressed as 

where F is a dimensionless parameter, a Froude number, given by 

F - 1  E k-2 v-2 w 2  = 14~2e-2 82 0 0 B -  0 B. 

Incidentally, we note that for a nearly uniform shear flow (e.g. Webster 1964; 
Tavoularis & Corrsin 1981), F-l is approximately equal to the ‘gradient ’ Richardson 
number Ri E o~&(aU,/i3s,)-~ since, for a such an experiment 7g0 x (CJUo/i3z2)-2. In 
that case ~ / [ ( F + ; f l ) p B ]  is proportional to the Prandtl number since 
Pe = -eRf(l - Rf)-l, where R, is the ‘flux ’ Richardson number (the ratio of buoyancy 
production to shear production). That is, for a nearly uniform mean shear, we could 
express (F + ;H) PB as 

where uT is the ratio RiIR,. 

with (A 31)’ 
Finally, the buoyancy dependent part of (& + is given by combining (A 27) 

( ~ t j  + ~ j t )  + + ~ i )  = -(Cle + (A 33) 
( F  

so that 

Another buoyancy correction occurs in the resistance-to-large-anisotropy term, the 
first term on the right-hand side of (A 34), since Cij) is theoretically proportional to 
7k0 = (k,vk0)-’ in the unstratified case (wB = 0), (see I) and, can be shown to be 
proportional to 7k0 = (k, vk0)--l (1 + +i~g k t 2  v i 2  H)-i = (k, vk0)-l (1 + + H / F ) t  in the 
presence of stratification. Thus, we should make the replacement 

cp -+ qjy 1 + ;H/F)-+ (A 35) 

in (A 34). Equation (A 34)’ with (A 35), is the fluctuation part of the pressure-strain 
term in the presence of buoyancy. It completes our goal of deriving (13). A 
simplification of (A 34) is sometimes possible since +22, , / [ ( F + + H )  PI is smaller than 
C1e by about 4 for the experimental nearly uniform shear flows of Webster (1964) and 
Tavoularis & Corrsin (1981) and could be ignored. 

A final note about the derivation of (A 34) is that e, includes random fluctuations 
of gravity waves energy as well as turbulence energy. Not included in e, is the kinetic 
energy of coherent gravity waves. A unified treatment that includes coherent as well 
as random gravity waves requires more work. 

This work was funded by the Naval Environmental Prediction Research Facility, 
Monterey, CA under Program Element 62759N, Project WF59-551 ‘Model Output 
Statistics ’. 

The author is indebted to Carl Love for numerical solution of the integrals in (A 21) 
and (A 25). 
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